
Sahana Eden Regression Test Platform

Table of Contents
Sahana Eden Regression Test Platform..1

Introduction..2
Locating the code..2

Running the Regression Tests GUI..3
Sahana Options...3
Test Modules...3
Selenium server options..3
Browser...4

Writing new Tests..5
The Test Case..5
Creating a test case using Selenium IDE..5
Selenium and Python..8

Modifying the GUI..11
Outstanding tasks...12

Introduction
The test suite is run using Selenium RC which supports a broad collection of browsers. The browser
selected will be opened up in its own window and it is possible to see the navigation of the web site.

The formatting of the results is done using HTMLTestRunner and extension of the unittest
TestRunner.

The regression tests are broken down into modules. Wherever possible the modules should be
designed such that they can be run independently of other modules. There are several important
exceptions to this as follows:

• CreateTestAccount This module will create the user admin@example.com this is a special
account created with administration rights and can be used by any other module that requires
an account with administration rights. Obviously because of this the module is not strictly a
testing module rather a utility module but is still runs through Selenium RC. To create an
account with admin rights this module needs to know the details of a user with admin rights
and so this (and only this) module will require that information. All other modules can use
the admin@example.com user created by this module, although generally the non-admin
user@example.com should be used unless admin privileges are required. If required this
module should be run first.

• DeleteTestAccount This module is used to delete the admin user created by the
CreateTestAccount module. If run this should be the last module run. If it is envisaged that
lots of testing will be done (such as in the process of developing new test modules) then an
appropriate course of action would be to run the CreateTestAccount module once and then
don't run the DeleteTestAccount; this means that the admin@example.com user will be
created and then not deleted, for all subsequent runs it will not be necessary to run the
CreateTestAccount. Once the testing has been completed the DeleteTestAccount can be run
to tidy up the user list.

• UserManagementCreate This module is similar to the CreateTestAccount except it
should be used to create non administrator users that are required by a testing module, such
as to test different roles. To add extra users to this see the file selenium/data/user.txt.

• UserManagementDelete This module is similar to the DeleteTestAccount except that it
will delete all the users created by the UserManagementCreate module.

Locating the code
All of the code resides in the web2py/applications/eden/static/selenium directory. At this level there
are five directories and one file as detailed blow:

• client This is the code from Selenium for the Python client included with Selenium RC

• data This holds data files that will be read by the python scripts to help automate the
testing process.

• results This hold the results in an html file from the last run

• scripts This holds all of the python code for the tests, including utility methods and the
GUI.

• server This is the code from selenium for the remote control server

• selenium-version text file describing the version of selenium server and client that is
currently installed. This is used to keep track of releases by the Selenium
project. Additionally it keeps version information on the

http://seleniumhq.org/projects/remote-control/
mailto:user@example.com
http://seleniumhq.org/download/
http://seleniumhq.org/download/
mailto:admin@example.com
mailto:admin@example.com
mailto:admin@example.com
http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html
http://tungwaiyip.info/software/HTMLTestRunner.html

HTMLTestRunner class that is used.

Running the Regression Tests GUI
A simple GUI has been developed to assist with the running of the tests.

Requirements
The JAVA_HOME environment variable1 should point to your preferred installation of Java

e.g.

C:\Program Files\Java\jdk1.6.0_22

or

/usr/lib/jvm/java-6-sun

The path to the browser needs to be in the PATH environment variable (this is normally the case on
Linux, but not normally on Windows2).

Overview
1. Launch the GUI:

cd static/selenium/scripts
python regressionTests.py

2. Enter the admin username/password.

3. Start the Selenium Server.

4. Select the Test Modules that you wish to run.

5. Run the tests using the browser of your choice.

1 http://en.wikipedia.org/wiki/Environment_variable
2 http://support.microsoft.com/kb/310519

The GUI window is subdivided into four parts as follows:

Sahana Options
• This consists of the user name and password. These are only needed if the test module

CreateTestAccount is being run.

• The URL to Sahana is required and a default value is given. The testing suite assumes that
this is running if it is not then the testing suite fails.

Test Modules
• This is a list of modules these are generated dynamically from the

selenium/data/testModules.txt file

Selenium server options
• This attempt to see if the Selenium server is running and helps with starting it. This only

works if the GUI is being run on the same machine as Selenium RC. This works well under
Linux, and moderately under Windows.

• The IP address and port are set to the default values, and logging is not enabled by default.

• The server can be started or stopped by using the appropriate buttons.

• The command to start the server is given below the buttons. So if this doesn't work on a
particular configuration report the problem and use the command on a terminal to continue
working.

Browser
• Selenium RC has native support for a wide range of browsers many of which are listed in

this panel. If there is demand for a non-listed browser then select the unlisted browser and
add the path to the browser. Support for this browser my exist so it may worth requesting for
this browser to appear in the GUI if it is likely to be used a lot. The list of browsers I held in
the selenium/data/browser.txt file.

Writing new Tests
The tests are all in Python but the best way to get started is to run Selenium IDE which creates an
HTML file that can run these tests. These tests can then be converted to Python and the code can
then be modified to use features such as functions, conditions and loops which are not available in
HTML.

Currently the Selenium IDE is only available in Firefox but in conjunction with Firebug to locate
the appropriate elements this forms a powerful environment to develop the initial tests.

The Test Case
The following sections will illustrate the process of creating a test case. It will step through the test
given in the test cases for the organization registry. An example is shown below:
TC Use Case /

Module
Feature/Acti

on Tested
Prerequisite Test Scenario

Description
Input Data Expected Result Test Results

1 Organization
Registry

 List
Organization

User has logged
into the "Sahana
Eden Disaster
Management
System" &
navigated to the
"List Organizations"
page

"1.Verify the
""Search""
functionality
2.Verify the
buttons in the
page
3.Verify the
Links in the page
4.Verify the Drop
down menus
5.Verify the UI
features of the
page "

N/A "1.Search functionality is
functioning properly
2.All the Buttons are
working properly
3.Links are navigate to
the relevant page
3.1 Display the relevant
web page
4.Display the relevant
values under drop down
menu
5.UI features are
formatted accordingly

Pass

2 Organization
Registry

Add
Organization

User has logged
into the "Sahana
Eden Disaster
Management
System" &
navigated to the
"Add Organizations"
page

"1. Verify the
buttons of the
page.
2. Verify the
Links of the page
3.Verify the drop
down list are
working on Add
Organization
page
4.Verify the help
links are working
5. Verify the UI
features of the
page "

N/A "1.All the Buttons are
working properly
2.Links are navigate to
the relevant page

2.1.UI features are
formatted accordingly on
Navigated page

3.Display the relevant
values under drop down
menu
4.Display the help tips
5.UI features are
formatted accordingly "

Pass

Creating a test case using Selenium IDE
To start building the test suite this section will use the Selenium IDE to record the actions required
to add an organisation to the registry.

 1 Start Firefox and put the instance of eden in a “clean state”. Log out, go to the home
page.

 2 Start the Selenium IDE by selecting Tools → Selenium IDE

https://spreadsheets.google.com/ccc?key=0AiR82JeFPTCOdE54LWpQREVWdmp6MmxzNzJfZkJ2V0E&hl=en_GB&authkey=CInLg48D#gid=7

 3 A blank Selenium IDE window will be opened

 4 Selenium IDE will record all of the actions that you perform on the target website.

 4.1 Set the base URL to the address of eden such as: http://127.0.0.1:8000

 4.2 Click on the red record button, if it is not already recording

 5 Now switch from Selenium IDE to the web browser and select Organisation Registry
from the menu. Then select Organisations → Add. Look at the Selenium IDE to ensure
that the actions already performed are being recorded, it should look like this:

 6 Meanwhile on the web page a warning message is displayed stating that we are not
Authorised to perform this action and we are on the login page. This will become our first
check that the test is working correctly. Open Firebug and inspect the page to find the
HTML tags on this page.

 6.1 Click on the inspect icon

 6.2 Click on the “Not Authorised” text to reveal the HTML behind this page

 6.3 Look at the firebug panel to see that the HTML element is held with a div element

http://127.0.0.1:8000/

with a class of “error”

 7 Move back to the IDE and in the command area select the blank line below the existing
commands:

 7.1 Add the command assertText, notice as you type options are provided to you.
Once you have entered the command the details of this command are given in the
Reference tab below.

 7.2 Set the target to be //div[@class="error"], you can check that this is correct by
pressing the locate button, the html element should flash, otherwise an error message
will appear in the log tab.

 7.3 In the value edit box add Not Authorised

 7.4 Right click on the command that has just been built and select Execute this

command. The command should run successfully and the command should now be
highlighted in a pleasing green colour. If you get any error check the error log and
correct the command.

 8 Repeat this process to check that the Login page is showing: Remember to select a new
command by clicking the area below the last command. By using Firebug you should see
that the Login element is a H2 tag. Because this is the only tag of its type on the page you
can use that at the location, //H2

 9 After adding two assert commands we can return to recording the action by going to the
web page and logging in. For the moment add your own login detail later we will see
how by using a Python function one of the users specifically created for for testing will
be used. Ensure that the IDE is recording click in the email box and type the email, next
tab to the password and enter the password for this used and finally press the Submit
button. This should have resulted in a Logged in message and the Add Organization
page being displayed. Time for some asserts

 9.1 Add an assert to check that the Logged in message is being displayed

 9.2 Add an assert to check that the Add Organization heading is being displayed

 9.3 Note: you can copy and paste the earlier asserts and modify them as appropriate, just
realise that the Logged in message is not in the error div but a confirmation div.

 10 Once more check that the record button is on and return to the web page to start entering
the details of the organization. Once the details have been entered and saved time for two
more asserts, Organization added and List Organizations.

At this stage all the commands have been entered to add an organisation and this script can be saved
and then run. Before running the tests, delete the organization just created and log out. Then from
the IDE click the Play Current Test Case button.

When I was running the test I found that there was a delay between the page loading and the error
and confirmation messages appearing on the screen. To fix this I added an Selenium command
pause 1000. The 1000 must be entered in the target edit box (not the value, i.e. the second not third
edit box) and I copied this before each assert on the error or confirmation div.

Selenium and Python
From the IDE select the source tab and this will show the underlying HTML script that Selenium
uses. Select Options → Format → Python - Selenium RC and the HTML will be converted to
Python. This can now be copied and pasted into a new Python file for this test case.

Create a file called organisation.py in the selenium/scripts/ directory and paste the code in. Make
sure that the test organisation has been deleted and the Selenium RC server is running run this script
from within the IDE. If the test didn't work there should be a trace explaining where the test failed.

Assuming that the test worked, the code is now ready for modification. The first change will be to
log in using the Action.login() method.

• Add the line import actions
• In the setUp() method of the OrganizationTest class add the following line:

self.action = actions.Action()
• Replace the lines that perform the login with a call to the login() method

Lines removed
sel.click("auth_user_email")
sel.type("auth_user_email", "user@example.com")

sel.type("auth_user_password", "<<<password removed>>>")
sel.click("//input[@value='Submit']")
sel.wait_for_page_to_load("30000")
time.sleep(1)
self.assertEqual("Logged in",sel.get_text("//div[@class=\"confirmation\"]"))

Replaced with
self.action.login(self, "user@example.com", "testing")

• The login function will actually move to the log in page whilst in the test case we have just
created, we went there by default, due to not having sufficient authorisation. So it is
necessary to add one more line to move to the add organisation page. This can be done in
one step as follows:
sel.open("eden/org/organisation/create")

Now run the test.

Should you have any errors it should be a simple case to correct them. Note that this assumes that
you have the user@example.com user created, to do that Run a session from the GUI with just the
CreateTestAccount & UserManagementCreate tests selected.

The modified code should look like this:
from selenium import selenium
import unittest, time, re
import actions

class OrganisationTest(unittest.TestCase):
 def setUp(self):
 self.verificationErrors = []
 self.action = actions.Action()
 self.selenium = selenium("localhost", 4444, "*chrome", "http://127.0.0.1:8000/")
 self.selenium.start()

 def test_organisation(self):
 sel = self.selenium
 sel.open("/eden/default/index")
 sel.click("link=Organisation Registry")
 sel.wait_for_page_to_load("30000")
 sel.click("link=Add")
 sel.wait_for_page_to_load("30000")
 time.sleep(1)
 self.assertEqual("Not Authorised", sel.get_text("//div[@class=\"error\"]"))
 self.assertEqual("Login", sel.get_text("//h2"))
 self.action.login(self, "testing@example.com", "testing")
 sel.open("eden/org/organisation/create")
 self.assertEqual("Add Organization", sel.get_text("//h2"))
 sel.type("org_organisation_name", "Example.com")
 sel.type("org_organisation_acronym", "eCom")
 sel.select("org_organisation_type", "label=Private")
 sel.click("//option[@value='10']")
 sel.select("org_organisation_cluster_id", "label=Logistics")
 sel.select("org_organisation_country", "label=United Kingdom")
 sel.type("org_organisation_website", "www.example.com")
 sel.click("//input[@value='Save']")
 sel.wait_for_page_to_load("30000")
 time.sleep(1)
 self.assertEqual("Organization added",
sel.get_text("//div[@class=\"confirmation\"]"))
 self.assertEqual("List Organizations", sel.get_text("//h2"))

 def tearDown(self):
 self.selenium.stop()
 self.assertEqual([], self.verificationErrors)

if __name__ == "__main__":
 unittest.main()

mailto:user@example.com

Next we will remove the commands that create an organisation and put them in a function, then call
this function twice so that two organisations can be created. Which will look as follows:

 def create_organisation(self, name, acronym, type, cluster, country, website):
 sel = self.selenium

 name = name.strip()
 acronym = acronym.strip()
 type = type.strip()
 cluster = cluster.strip()
 country = country.strip()
 website = website.strip()

 sel.open("eden/org/organisation/create")
 self.assertEqual("Add Organization", sel.get_text("//h2"))
 sel.type("org_organisation_name", name)
 sel.type("org_organisation_acronym", acronym)
 sel.select("org_organisation_type", "label="+type)
 sel.click("//option[@value='10']")
 sel.select("org_organisation_cluster_id", "label="+cluster)
 sel.select("org_organisation_country", "label="+country)
 sel.type("org_organisation_website", website)
 sel.click("//input[@value='Save']")
 sel.wait_for_page_to_load("30000")
 time.sleep(1)
 self.assertEqual("Organization added",
 sel.get_text("//div[@class=\"confirmation\"]"))
 self.assertEqual("List Organizations", sel.get_text("//h2"))
With the function calls as follows:
 self.create_organisation("Example.com", "eCom", "Private", "Logistics", "United
Kingdom", "www.example.com")
 self.create_organisation("Example.net", "eNet", "International NGO", "Recovery",
"United States", "www.example.net")
This can now be modified to use data driven testing by creating a text file with the organisation data
in that file. Create a file called organisation.txt in the selenium/data directory with the
following contents:
Example.com, eCom, Private, Logistics, United Kingdom, www.example.com
Example.net, eNet, International NGO, Recovery, United States, www.example.net
Then change the test_organisation() method to read this file as follows:
 source = open("../data/organisation.txt", "r")
 values = source.readlines()
 source.close()
 for org in values:
 details = org.split(',')
 if len(details) == 6:
 self.create_organisation(details[0].strip(),
 details[1].strip(),
 details[2].strip(),
 details[3].strip(),
 details[4].strip(),
 details[5].strip(),
)
Now all that is needed to add another organisation to the test is to add a line to the
organisation.txt file.

This test can be run from with the IDE but to allow it to run from the GUI the file
testModules.txt needs to know about the new module, which is done with the following line:
Organisation, organisationTest
The first element is the value that will be displayed in the GUI the second is the name of the file.

Modifying the GUI

Outstanding tasks
• GUI - Remember the selection made by the user so that the next time the suite is run the

details are preserved (however, don't store user name or password).

• GUI - Improve the control of the Selenium server under Windows.

• GUI - Improve the control over selecting and deselecting the test modules (and ensure this is
integrated with the resumption of the previous settings).

• GUI - Improve the layout of the test modules (probably add two columns to allow more
modules to be added)

• GUI - add an option to keep the browser open

• Investigate and propose a code coverage mechanism.

• Trial and proposes changes for the integration of Selenium 2, currently in alpha.

